Licence Professionnelle GPI

Option : métrologie et contrôle qualité

Métrologie sans contact

Mesures interférométriques en lumière blanche Microscopie interférentielle

NOMS :	Date :

COMPTE-RENDU

N°	Questions	Pts sur place	Pts.	Remarques :
	Principes /6.5 pts			
2	Le microscope interférométrique Veeco Description - Tableau1 Techniques de mesures.		/1.5	
3	Etude Excel Sonde de cohérence - Tableau2		/1	
4	Etude expérimentale des principes de mesure Qualité des réglages Mode VSI Mode PSI Qualité des images	/1.5	/1.5 /1	
	Mise en œuvre / 6 pts			
	Mesure par PSI Miroir	/1.5		
2	Miroir_PSI_X5_FOV1.opd Miroir_PSI_X20_FOV1.opd Lentille Lent_PSI_X20_FOV0,5.opd		/1.5	
	Mesure par VSI Etalon de calibration	/1.5		
3	Etalon_VSI_X5_FOV1.opd RugoElalon_VSI_X20_FOV1.opd CN2_VSI_X?_FOV?.opd Exemple_VSI_X?_FOV?.opd		/1,5	
	Performances/ 7,5 pts			
1	Avantages et inconvénients des cieff. R Tableau 3 Mesure de rugosité Tableau 4 Conclusions		/2	
2 3	Courbure et stries d'une lentille Exemple choisi	/1		
4	Calibration PSI		/1	
5	Performances (feuille annexe)		/2,5	
6	Autres techniques		/1	
	Note:		_/20	

cadre 1 : Barème de correction.

3LP_MicroInterf_CR.doc 1/4

Licence Professionnelle GPI

Option : métrologie et contrôle qualité

Métrologie sans contact

Mesures interférométriques en lumière blanche Microscopie interférentielle

INTRODUCTION - PRINCIPES

- 1. Système optique de mesures.
- 2. Le microscope interférométrique Veeco.

2.1 Description

ELEMENTS	SOURCE BLANCHE	FILTRE DE DENSITE	FILTRE PASSE BANDE	OBJECTIF INTERFERO- METRIQUE	CAMERA CCD
FONCTION					
Dénomination emplacement sur NT1100					

Tableau	1
i abieau	

O	- 44	1- T-	ableau	4
t.∩mr	NETEL	10 12	inipalli	1

L'IOA intègre aussi une FOV. Qu'est-ce qu'une FOV ? Quelle est son rôle ?

De combien d'objectifs dispose la tourelle ? Précisez le type et le grossissement de chacun.

FOV:		
Objectifs:		

2.2 Techniques de mesures.

A quoi sert le transducteur piézo-électrique PZT en mode PSI ? sur quoi agit-il ? Qu'est-ce que le système LVDT utilisé en mode VSI ? Quel filtre est utilisé en mode PSI ? en mode VSI ?

PZT en mode PSI :	
Système LVDT en mode VSI :	
Filtres:	

3. Etude Excel

Evaluer la différence de marche δ_{limite} appelée longueur de cohérence 1 . Compléter le Tableau 2 Comment varie l'allure du signal lorsque la BP varie ? Expliquer le terme "sonde de cohérence".

$\lambda = 0.91 \; \mu m$	Pas de filtre	F	iltre passe-band	de
BP : Δλ (μm)	≈ 0,30	0,025	0,050	0,10
δ _{limite} évalué (μm)				
$\ell = \frac{\lambda^2}{\Delta \lambda} \text{ calculé (µm)}$				

Tableau 2

Sonde	de	cohérence	
JULIUE	uc		

4. Etude de principe sur l'interféromètre Sopra

4.1 Le mode VSI

3LP_MicroInterf_CR.doc 2/4

Licence Professionnelle GPI

Option : métrologie et contrôle qualité

Métrologie sans contact

Mesures interférométriques en lumière blanche Microscopie interférentielle

SopraVSI.jpg. Noter la hauteur z entre le centre et un point éloigné. Distance x entre ces points.

Rayon de courbure du miroir R = $\frac{x^2}{2z}$

4.2 Le mode PSI

SopraPSI.jpg. Rôle du filtre interférentiel. Rayon de courbure R du miroir.

$$X = Z = R = R$$

MISE EN ŒUVRE

- 1. Mesure de profils et d'états de surfaces
- 2. Mesures par PSI
 - 2.1 Miroir

Miroir_PSI_X5_FOV1.opd

Montrer votre réglage

2.2 Lentille

Lent PSI X20 FOV0,5.opd

- 3. Mesure par VSI
 - 3.1 Etalon de calibration

Etalon_VSI_X5_FOV1.opd

Montrer votre réglage

3.2 Echantillon de rugosité

CN2_VSI_X?_FOV?.opd; Rugetalon_VSI_X20_FOV1.opd.

3.3 Autre exemple

Exemple_VSI_X?_FOV?.opd

PERFORMANCES DU SYSTEME

1. Rugosité

1.1 Avantages et inconvénients des coefficients R

Tableau 4

1.2 Mesure de rugosité CN2

Tableau 3

Quelles valeurs de rugosité allez vous retenir ?

Faire une sortie imprimante de la représentation 2D avec diagrammes en X et en Y et les valeurs de R_a, R_t retenues

Compensation	None	Tilt	Cylinder
R _q			
R _t			

Tableau 3

3LP_MicroInterf_CR.doc 3/4

Licence Professionnelle GPI

Option : métrologie et contrôle qualité

Métrologie sans contact

Mesures interférométriques en lumière blanche Microscopie interférentielle

Paramètres	Avantages	Inconvénients
R_a		
R_{q}		
R _t		

R _q		
R _t		
Tableau 4		
2. Etude	de la courbure et des stries d'une lentille	9
"2D Analy	ysis". Profondeur des stries. R _q sur tout le champ; R	_q sur une région sans stries
3. Mesure	e de profil sur l'exemple choisi.	
4. Calibra	ation du mode PSI	
5. Perfori	mances de la méthode	
	une étude sur un exemple de votre choix permettal le résultats, y porter vos conclusions. Compléter vot	nt d'évaluer la reproductibilité et la résolution. Faire re étude avec "Technical Reference Manual"
Etude de rep	senter sur une feuille annexe. productibilité (fidélité) et résolution : Sujet (échantillo de de défauts); méthode utilisé ; résultats; analys	
6. Autres	techniques	
Quelles s	ont les techniques concurrentes à la microscopie in	terférométrique ? Champ d'application de chacune.

4/4 3LP_MicroInterf_CR.doc